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CHAPTER I

I. INTRODUCTION

1.1 Description of the Problem

This thesis is concerned with the problem of efficiently allocating

the use of a noisy channel to a large number of independent transmitters.

The transmitters are attempting to communicate with a common destination.

Simultaneous transmission by two or more channel users is termed a

"conflict", and results in the central receiver being unable to detect

any coherent message. A retransmission scheme must therefore be estab-

lished that will resolve conflicts and provide high system throughput.

A first-come first-served (FCFS) algorithm to accomplish this, based

on the assumption of error-free detection when no conflict occurs,

has been developed by Gallager. This algorithm will be presented and

then used as the basis for designing a more general algorithm that

allows for a limited class of detection errors.

In this first chapter the source and channel models are specified,

and a few common accessing strategies are briefly outlined.

1.2 Source and Channel Model

In modelling this communication system we first assume that there

are an infinite number of transmitters, or message sources. Each

message is of a fixed length, called a packet. The time necessary to

transmit a packet is defined as a slot. All time quantities referred

to in this paper will be in terms of this fundamental unit, the slot.

-7-



The users generate messages in a Poisson manner with a global rate

of X packets/slot. Thus the probability of a particular source gene-

rating a message is 0, but the expected number of messages generated

system-wide during each slot is X. At most one message can be success-

fully transmitted during each slot, and it is immediately apparent

that X must be less than one to insure system stability.

The users are not capable of communicating with each other, but

they can listen to the channel and instantaneously sense whether 0, 1

or more than one (a conflict) messages are being transmitted. If any

portion of two messages overlap during transmission, both messages must

be retransmitted in their entirety. We begin by assuming that receiver

and user detection is error-free. Thus if only one source is using

the channel its message is received correctly at the central facility.

Different classes of system errors will be explored later.

It is important to note that messages are generated continuously

by the sources, but are only sent when the source determines, based

on the algorithm implemented, that it shculd transmit. This

algorithmic decision is a function of the generation time of the

message and the history of channel transmissions as detected by

the source. In evaluating a conflict resolution scheme we want to

determine the greatest arrival rate ) such that the expected number

of messages generated but not yet sent remains bounded. This X is

called the capacity.

1.3 Some Accessing Strategies

Two commonly employed multi-accessing strategies are time division

-8-
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multi-accessing (TDMA) and frequency division multi-accessing (FDMA).

Because we are concerned with a large number of users, FDMA is expensive

in terms of hardware costs. The bursty nature of the sources being

considered leads to poor delay characteristics with a TDMA approach.

Although they prevent the occurance of conflicts, neither TDMA nor

FDMA is particularly well matched to efficiently allocating a channel

to a large number of bursty users.

Another class of algorithms that have been analyzed is the ALOHA

system, developed at the University of Hawaii. In this strategy, when

a conflict occurs the contending sources wait a random length of time

before retransmitting. A variation on this theme, that increases

capacity from Lto 1 is called slotted Aloha. Slotted Aloha places

the constraint that all transmissions must begin at discrete times

separated by one slot intervals. Both of the Aloha schemes, however,

become unstable as the number of users goes to infinity.

Several strategies have been proposed that involve using a secondary

channel to reserve time on a primary communication channel. The secondary

channel is randomly accessed and the primary channel is allocated

through dynamic TDMA to those sources requesting it. This concept is

based on the assumption that any reservation message is much shorter

than a packet. A system of this type again runs into stability problems

as the number of sources gets very large. Also, this approach still

requires an Aloha - type algorithm (to access the secondary channel),

and is really not offering any new contribution to the fundamental

multi-accessing question.

-9-



Another Aloha variation, carrier sense multiple access, requires

users to listen to the channel before transmitting to ascertain if

there is a transmission already in progress. This is only useful when

the time necessary to listen to the channel is small in comparison to

a slot. With many users this algorithm has stability problems induced

by many sources trying to transmit upon the termination of a previous

message.

In a 1977 Ph.D. thesis [1], Capetanakis proposed a fundamentally

different approach to resolving conflicts. He begins by assigning an

address, corresponding to a terminal node on a binary tree, to all

sources. When a conflict occurs during a slot, only the sources in

one half of the tree are permitted to retransmit during the next slot.

Successive binary division of the sources continues until the conflict

is resolved. The algorithm then works back toward the root node, level

by level, by transmitting all sources in the branches that had been

inhibited. If a conflict needs to be resolved, successive binary

divisions again take place. When the root node is reached all conflicts

from the original transmission have been resolved. It is important to

note that all messages generated during the process of resolving a

conflict cannot be transmitted until the return to the root node. Thus

no messages are sent for the first time during the conflict resolution

phase. Capetanakis later generalized his algorithm by allowing the

tree root node to be of degree greater than two, depending on the

length of the previous conflict resolution period, and thereby achieved

a capacity of .430.

The Capetanakis algorithm is important in that it geometrically

-10-
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decreases the number of sources able to transmit during successive

slots of conflict resolution. A binary elimination takes place. This

is as opposed to TDMA or FDMA schemes that linearly allocate the

channel or schemes where all sources randomly access the channel

(Aloha).

This concept of systematically inhibiting the sources allowed to

transmit underlies the Gallager algorithm. While Capetanakis classifies

sources by a static binary address, however, Gallager looks at only the

sources that have generated messages and classifies them in terms of

the time their message was generated.

In the next chapter the Gallager algorithm and its significant

features are explained, as well as some proposed modifications to the

algorithm. In addition a Markov process model for the Gallager algorithm

will be presented. The Markov model is essential to the analysis of

the performance of this algorithm and a modified model will eventually

be used to represent the Noisy Channel Algorithm.

II. A CONFLICT RESOLUTION ALGORITHM

2.1 The Gallager Algorithm

The Gallager algorithm is, like the Capetanakis tree algorithm,

based on a slotted system. By this we mean that transmissions can only

begin at discrete times (beginning at a slot). We assume that all

channel users are synchronized with the slot boundaries. The key idea

in the Gallager procedure is that at the beginning of each slot a system-

wide transmission interval is defined. During that slot, only sources

that have messages with generation times falling in the transmission

-11-



interval are permitted to transmit. If a conflict occurs, the next

transmission interval will be the first half of the previous transmission

interval.

In the Gallager algorithm the messages being processed during a

given slot were actually generated at an earlier point in time. Thus

at each slot there is a system lag. If the system is to be stable this

lag, on the average, must not be increasing with time.

In implementing the Gallager algorithm each source must keep

track of three variables. The system lag - d, the length of the trans-

mission interval - t, and the generation time of any message that

particular source has not yet successfully transmitted. At the start

of a slot, all messages generated in the interval Z, begun d slots

ago, will be sent. The transmission interval length and lag are updated

system-wide after each slot on the basis of that slot's result (0,1 or

more than one message sent).

The workings of this algorithm are best illustrated by going

through an example. In figure 1.1 the system is in a renewal state.

By this we mean that all messages generated before the point A have

been successfully transmitted, and nothing is known about the message

distribution beyond A (except that it is Poisson). The policy at a

renewal state is to transmit an interval of length %. beginning ato

the point A. t. is to be chosen so as to optimize system throughput.0

If d < Lo at a renewal point, we assume that the system either trans-

mits an interval of length d, or waits until d > t. before transmitting.

Note that in real time we are at the slot beginning at B when this

first transmission interval, beginning at A, is sent. In figure 1.1

-12-
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there is only one message transmitted, and thus the system progresses

to another renewal state. We note that one slot has elapsed, The system

variables are updated as follows:

d -d +1-9.
new old o

new o

If the channel had been idle during this slot the algorithm would have

continued identically. Again, all messages in the interval (zero in this

case) would have been successfully transmitted.

In the next slot transmission (fig. 1.2a) a conflict occurs.

We define this interval as a conflict interval. The algorithm states

that in resolving a conflict we define the next transmission interval

as the first half of the conflict interval. Hence in 1.2b,

d =l+dnew old

kold Xo
new 2 2

During this slot we find that the channel is idle and we therefore

know that there are > 2 messages in the second half of the conflict

interval. The first half of the conflict interval has been processed

and we define a new conflict interval equivalent to the second half of

the original conflict interval. Again we want to send the first half

of this conflict interval (the third quarter of the original interval)

So in 1.2c,

dnew dold + 1 old

old o
new 2 4

The next transmission results in a conflict. At this point an

-14-



important feature of the Gallager algorithm comes into play. If the

first half of a conflict interval contains a conflict, the second half

of the interval is returned to the waiting interval. The waiting interval

is defined as the set of times that will not be part of a transmission

interval before the system has passed through at least one renewal

state. In figure 1.2d the waiting interval begins at C and continues

to the present time.

In returning a portion of the conflict interval to the waiting

interval we are making use of a property of the Poisson distribution.

For a Poisson distribution of messages over an interval, the number of

messages in each of two disjoint portions of the interval are independent

random variables. And for two independent random variables, x1 and x2,

Pr(x 2 = xjx1 > 2, x 1 + x2 > 2) - P 2 XW

In other words the interval being returned has a Poisson distribution

of messages. This preserves the fact that any portion of the waiting

interval has a Poisson message distribution.

At the next slot (1.2d),

d =l+dnew old

zold 
zo

new 2 8

There is a new conflict interval and its first half is being

transmitted. A successful transmission results and we are left with an

interval that contains 1 or more messages (1.2e). The algorithm states

that in this instance we send the entire interval, regardless of its

length. Hence

new old old

new old 8

-15-



No conflict occurs during this slot and we have reached a

renewal state. The original transmission interval of length L has0

been partitioned into a region in which all messages have been success-

fully transmitted, and a region that has been returned to the waiting

interval.

The renewal state incorporated into Gallager's algorithm is

significant. This implies that the system repeatedly comes to a point

in the algorithm where the channel history is independent of the

statistics of any interval that will be transmitted in the future.

This is a feature of the algorithm that we will try to maintain when

errors are introduced into the system. The Gallager procedure is not

based on storing the result of slot transmissions from the beginning of

time, but only, at worst, from the most recent renewal state. This

makes implementation of the Gallager algorithm very manageable.

1. 266an
Gallager has shown that the optimal value of 2 is -- and

0

that a capacity of .48711 can be achieved with his algorithm. We

note that this is a FCFS algorithm in that no message is successfully

transmitted before a message with an earlier generation time.

The increase in capacity of the Gallager algorithm over the

Capetanakis tree algorithm can be attributed to two factors. First

of all, when no messages are found in the first half of a conflict

interval Gallager defines the second half of the interval as a new

conflict interval and then transmits only its first half on the next

slot. In the analogous situation, Capetanakis transmits the entire

second half of an original conflict branch. This is highly inefficient

(it will always create a conflict).

-16-
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Secondly, Capetanakis' root node is constrained to have an

integer number of branches. In the Gallager algorithm 1o 0the maximum

transmission interval length, can be optimized over a continuous range

of values. This is also a source of superior performance.

2.2 The Markov Process Model

As is perhaps implied by my description of the Gallager algorithm,

this procedure can be represented as a Markov process with a countably

infinite number of states. After any slot we are faced with processing

one of three types of intervals: an interval of length 1. of which we0

have no knowledge (after a renewal state); an interval which we know

to contain more than one message (after a conflict); or an interval

which we know to contain one or more messages (after a single message

has been found in the first half of a conflict interval). We thus

define the following state classes:

S (T) : The renewal state in which an intervalo

of length T will be transmitted during

the next slot.

S (x) : An interval of length x contains > I

messages. The entire interval is transmitted

during the next slot.

S 2(x) : An interval of length x contains > 2

messages. The first half of the interval will

be transmitted during the next slot.

The time variables are normalized here by multiplying by A. Thus

T = 0Lo and is in units of packets. Similarly, x is in units of

-17-
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packets and must be of the form (T)(2 ) where i is a nonpositive

integer (hence the states are countably infinite). I will continue

to use this notation to avoid explicitly carrying X. The "length" x

is, in reality, an interval where the expected number of messages is x.

Figure 2 shows the state transition diagram for the Markov

process model of the Gallager algorithm. We distinguish between the

two S2(1) states stemming from a S2(x) state. S2 ( )1 indicates that

the interval being considered is the first half of the last conflict

interval (the second half has been returned to the waiting interval).

2 )2 indicates that the interval being considered is the second half

of the last conflict interval (the first half has been successfully

processed). The policy for the two states is identical.

2.3 A More General Algorithm

Mosely 13] has examined the Gallager algorithm with an eye towards

generalizing it in two respects. The first issue is that Gallager

arbitrarily splits conflict intervals in half, when the optimum dividing

point would be a function of the interval length and X. Secondly, in

a S1 (x) state Gallager sends the entire interval. In fact, it may be

more efficient to send only a portion of the interval, or an interval

of length greater than x.

Mosely's analysis determined that Gallager's S1 (x) policy was

optimum. She also found that splitting conflict intervals into equal

parts was a very good approximation to the optimum policy. Whatever

loss of optimality that is incurred by continuing to work from Gallager's

algorithm is more than offset by the ease of analysis and implementation

it provides.
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III. THE NOISY CHANNEL ALGORITHM

3.1 Introducing System Errors

Thus far we have assumed that all sources have received perfect

information while monitoring channel activity. In other words, if a

source detects a conflict during a slot transmission, more than one

message was sent (with probability 1). In this chapter a limited

class of probabilistic detection errors is introduced into the system.

We then examine how these errors influence the functioning of the

Gallager algorithm. The case now exists where updated state policy

will be based on information that inaccurately represents the statistics

of the intervals being processed. This creates a number of system

error states that must be characterized.

After the system error states have been incorporated into the

Markov process model the Gallager algorithm's ability to process these

states is examined. It becomes apparent that the algorithm no longer

represents a stable channel allocation scheme. A number of modifications

are then made to the Gallager procedure to formulate the noisy channel

conflict resolution algorithm. This new algorithm retains some

important features of the Gallager algorithm and possesses a number

of error correcting mechanisms.

In modeling detection errors we begin by assuming that when an

error is made, all sources and the receiver make the same error. No

isolated source errors occur, only system-wide errors. This is realistic

if the sources and receiver are relatively close together, or if the

sources receive feedback information from the central facility. This

assumption allows us to continue to model the system as a Markov process

-20-
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where there is a single, system-wide state at any slot. Sources making

errors independently would create a situation where different message

generation intervals would be transmitted during the same slot. This

would seriously threaten the ability of a transmission interval

algorithm to properly resolve conflicts. The analytical approach in

dealing with isolated errors would be to look for means by which a

source that has made an error could, by continued monitoring of the

channel, return to the correct system-wide state.

There are six types of detection errors. They are

P Ol Pr( 1 detected 10 sent)

P = Pr ( > 2 detected 10 sent)

P 10  Pr (0 detected 11 sent)

P = Pr ( > 2 detected Ii sent)

P20  Pr (0 detected > 2 sent)

P21 =Pr ( detected > 2 sent)

We will use this P.. notation to indicate both a type of error and aiJ

probability.

The Noisy Channel Algorithm is effective if any of the above

errors occur. However its analysis appears extremely complicated

unless we assume P01 = P 1, P p20 0. This is now justified.

With all six error probabilities taking on non-zero values a

great number of error states are introduced into the Markov representation.

The analysis of any conflict resolution algorithm rapidly grows in

complexity as a result. It can also be argued that P0 2 and P1 2 are two

-21-



I
of the more likely errors to occur. It is unlikely that noise would be

interpreted as a packet with the necessary protocol and parity bits

(P0 1 ). It is also unlikely, from a signal to noise ratio argument,

that a message would be undetected (P20 or PI0
) .

The underlying sensitivity to channel noise can be determined by

measuring the system capacity with varying P02 and P 12 Tnis is the

important issue.

A number of nice properties follow from the P02' P1 2 only error

model. These include:

1. An error can only occur when a conflict is detected or,

conversely, a detection of 0 or 1 message is always

correct.

2. All errors eventually lead to "not finding enough messages".

These can be discovered as processing continues.

3. There is no error cancellation. There is, for instance,

no way a P20 error can negate a P02 error.

These properties contribute toward making system error detection and

correction a workable problem.

There are now three error state classes in addition to the

original three Gallager state classes:

S20(x) An interval of length x is thought to contain more

than one message but contains none. This is created

from the previous slot by a P02 error occuring during

transmission of the x interval, or by no message

being detected (correctly) in the first half of a

S20 (2x) interval.

-22-



S2 1(x) An interval of length x is thought to contain more

than one message but contains exactly one message.

This arises from a P1 2 error occuring during trans-

mission of the x interval, or by no message being

found in the first half of a S 21(2x) interval.

S1 0 (x) An interval of length x is thought to contain one

or more messages but contains none. This arises from

a single message being found in the first half of a

S2 1 (2x) interval.

It is important to realize that for any interval conflict resolution

scheme the policy at each state is only dependent on the number of

messages thought to be contained in an interval. In other words,

the policy will be the same for the states S2 1(x), S2 0 (x), and S2(x).

The same is true for S10 (X) and Sl(x).

Gallager's algorithm is not stable for the P02,P12 class of

errors. If a P02 error is made the S20 (x) state is entered. The

system then proceeds to keep splitting the interval in search of

messages that don't exist. Unless another error occurs, a new

conflict interval, equivalent to the most recent half of the previous

conflict interval, is defined after each slot. If another P error
02

does occur during processing, the system still progresses to a

S20 (x) state. In either case, no packets will again be successfully

transmitted.

It can be argued that if the P0 1 error had been included in the

model this type of instability would not necessarily occur. The

-23-



important point, however, is that the Gallager algorithm has no way

of realizing it is in a S20 (x) state. This is inefficient and some

alternate policy at S2 must be developed. A policy must also be

defined for the case where a transmission at S10 results in no message

being found.

A more subtle problem also arises in the context of using the

Gallager algorithm to process detection errors. Suppose the system

is in a S2N) state and a P02 error occurs. The algorithm states that

when a conflict is detected in the first half of a conflict interval,

the second half is returned to the waiting interval. This is based on

the assumption that the interval being returned has a Poisson message

distribution. In the case indicated, however, the interval being

returned contains two or more messages. The claim that every portion

of the waiting interval has an identical message distribution is no

longer valid. The existence of a renewal state, in the sense that

was discussed earlier, is also lost. We no longer have regular

instances where the channel history is divorced from future processing.

The Noisy Channel Algorithm closely follows the strategy of the

Gallager algorithm. The algorithm has beenimodified, however, to include

two new procedures. One of these insures that any interval being re-

turned to waiting has a Poisson distribution of messages. This

preserves the renewal state. The other new policy provides a means

for detecting from an S20 (x) state that an error has been made. This

restores system stability.

3.2 The Noisy Channel Algorithm

In this algorithm a stack mechanism is proposed to avoid returning
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"non-Poisson intervals" to the waiting interval. A stack entry will

consist of three pieces of information: the length of an interval, a lag,

and the number of messages that have been successfully transmitted since

that stack entry was created. The lag must be incremented after each

slot and the message counter must be incremented with each successful

transmission. All intervals that would normally have been released to

the waiting interval are placed on the stack. Thus an entry will be

added to the top of the stack when we are in a S2 (x), S21(x), or S20 (x)

state and a conflict is detected upon transmission. All stack entries

are disjoint and the top stack entry represents the stack interval

furthest removed from real time.

When the message counter for a stack entry reaches two that

interval is released to the waiting interval and the stack entry is

eliminated. The two successful transmissions imply that the system

was in fact in S2, and an error induced conflict did not occur when

that stack entry was created. We verify that an interval has a Poisson

message distribution before it is released to the waiting interval.

Two successful transmissions, as opposed to a detected conflict, are

necessary for this verification. Stack entries will be eliminated from

bottom to top, or equivalently, from right to left on the time axis.

The stack is used to determine the next state when an error is

detected. If we come to a point in processing where we are "a message

short" (a S transmission yields no message) then we take the top entry

off the stack and process it as if it were Poisson conditioned on

having > 1 messages.This is as opposed to normally processing the

interval as if it were Poisson conditioned on having > 0 messages.
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If the stack is empty it indicates that the most recent detected conflict

was a P1 2 error, and the system returns to SO $21 errors are corrected

in the same manner.

Similarly, if we discover the system is in a S20 state, we take

the top entry off the stack and follow S2 policy. If the stack is empty

the last detected conflict was a P0 2 error and we return to SO.

If the system is in a regular state (S0,S I , or S2 ) it indicates

that all processing errors have thus far been corrected. In the

renewal state, So, the stack will be empty. The S1 or S2 state, however,

does not indicate an empty stack.

The next question that arises is how does the algorithm "discover"

that it is in a S20 or S21 state? The logical approach to this problem

is that at some point we want to stop splitting a conflict interval

and transmit the entire interval. If the conflict is confirmed then the

splitting procedure is continued. If an idle channel or a successful

transmission is detected then an error must be corrected through use of

the stack. This is the strategy of the Noisy Channel Algorithm.

We define

x T * 2 NCTOFF

where NCTOFF is a nonnegative integer. We then specify a new policy for

states S 2 0 (x), S21 (x), and S 2 (x) when x < x "

For x < x the system instantaneously moves from these states
- c

(before the next slot transmission) to a special processing state

Sl(x). The policy at S1(x) calls for the transmission of the entire

interval. If 0 or 1 message is detected then a new state is determined

using the stack. An error has been detected. If a conflict is detected
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during S1 (x) transmission then the system moves to another special

processing state - S (x). The policies at S2 (x) and S2(x) are the same,222

except that the S2(x) policy disregards the xc cutoff. Therefore the

conflictinterval will be split once. If a conflict is detected the

system will go to state S2), which will in turn go to Si( ). Thus

the system going to S2 (x) allows one interval division where the

policy at S2 (x) would not.

If there are in fact two messages contained in an interval of

length x < x then this policy change is not efficient. The first

half of every new conflict interval will be transmitted for two

consecutive slots until the conflict is resolved. A sort of oscillation

between S1 and S2 policy will take place. An optimum xc must therefore

be determined so that, based on P02 and P12' the risk of transmitting

intervals thought to contain > 2 messages is justified.

This policy for x < xc can be viewed as a member of a general

class of algorithms. We could follow a procedure of sending an entire

S2(x) interval for x < X and then allow for n divisions before a

conflict interval would again be transmitted in its entirety. In the

algorithm above n = 1. A larger n would make sense for a system with

small detection error probabilities, but it is doubtful the capacity would

be significantly higher than the for the n - 1 policy, with NCTOFF

and T optimized.

As an example of the Noisy Channel Algorithm, in Figure 3 we

have the same message processing problem that was used in Figure 1 to

illustrate the Gallager Algorithm. A P0 2 error has occurred in

figure 3.2b, however, at a S2(X£o) state. We assume that NCTOFF is set
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at three for the algorithm. At figure 3.2c the interval A has been

put on the stack and the system is following the policy of the 20(-4-0

state. Figures 3.2c and 3.2d show succesive conflict interval divisions

yielding no messages. In figure 3.2e the cutoff point (2- 3 ) (t 0), haso0

been reached and the entire interval of length -{ slots is transmitted.

When this creates an idle channel the interval A is taken off the

10
stack and the system is in the state $2(2) in figure 3.2f. Processing

then continues as in the Gallager Algorithm. We have introduced only

one error into this example. Another error could have occurred at any

point in the algorithmic processing where 0 or 1 messages was transmitted.

This would have created the necessity for a greater number of slots to

successfully transmit the messages. An error is detected and then we

"backtrack" by taking entries off the stack, to the point where the error

was made.

The noisy channel conflict resolution algorithm is explicitly

defined in Appendix A by the Markov state transition policies. Note

that while Gallager's S2 state is depicted in this model, it now has

a different associated policy that involves interaction with the stack

and S1  A policy is also defined for the case where a transmission

from a S1 state results in no messages being detected. The policy at

S is unchanged.
0

The state of the system at any slot is now also a function of the

stack entries at that point. The system state has an additional

dimension. A reference to a system state, like S2' is really a

reference to a class of states. The states in a class are differentiated

by their interval length and the stack configuration.
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The Noisy Channel Algorithm corrects all P0 2 and P1 2 errors

and is stable for this class of errors. Certain features of the

Gallager Algorithm have been preserved. Namely, the Noisy Channel

Algorithm is FCFS and has a renewal state.

This algorithm must now be optimized over two parameters: T and

xc(or equivalently, NCTOFF). A quantitative discussion of the algorithm

and this optimization is presented in the next chapter.

IV. THE CAPACITY CALCULATION

4.1 The General Approach

An approach to calculating the capacity of the noisy channel

system was hinted at in chapter 2. Just as in the Gallager algorithm,

the expected change in the system lag between successive entries in

state S0 must not be positive in the Noisy Channel Algorithm. A

stable system cannot, on the average, be successfully transmitting

messages at a rate slower than the message generation rate. Equivalently,

the waiting interval cannot have a positive expected growth rate.

In this chapter e derive an expression for,the expected change in the

system lag between successive renewal states. This is a linear, monoto-
A

nically decreasing function in 1/X, and therefore the X for which the

expected lag change equals zero is the system capacity.

Gallager's algorithm involved defining a single policy in terms

of T - the normalized SO transmission interval that yielded the highest

stable throughput (the capacity). With the Noisy Channel Algorithm the

optimum policy is a function of P and PI2 In addition, there are
02 12*

3 .
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two parameters, T and NCTOFF, that must be jointly optimized for each

set of error values. We will want to examine the manner in which the

optimum policy, as well as the capacity, varies with different system

error probabilities.

4.2 The Capacity Calculation

We begin by defining the following random variable:

L(S 0) The change in the system lag from a renewal state slot

to the next renewal state slot.

The expected lag change, E(L(S0 )), has three components:

E(L(S0)) Elnumber of slots until the next renewal state]

+ E[number of slots returned to the waiting interval]

T (4.1)

T
is the initial So transmission interval length - in units of slots.

This is the time that has been taken from the waiting interval.

We next decompose L(S0 ) into five terms. These correspond to

L(S0 ) conditioned on the five possible sent-detected message combinations

that could occur during the first transmission interval. We define these

random variables as follows:

L 00 The system lag change between successive renewal states

given that the first transmission results in 0 messages

sent and 0 messages detected.

L02 The system lag change between successive renewal states

given that the first transmission results in 0 messages

sent and > 2 messages detected.

" i -31-
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Ll : The system lag change between successive renewal

states given that the first transmission results in

1 message sent and 1 message detected.

L12 : The system lag change between successive renewal states

given that the first transmission results in 1 message

sent and > 2 messages detected.

L 22 : The system lag change between successive renewal states

given that the first transmission results in > 2 messages

and > 2 messages detected.

It follows that,

E(L(S0 )) Pr(O in T) [P0 2 E(L0 2 ) + (1 - P 02) E(Lo0 )]

+ Pr(l in T) [P 12 E(L 12 ) + (l - P 12 ) E(L 1)1

+ Pr(> 2 in T) E(L 22) (4.2)

Clearly E(Lij) can be thought of as having the same three types

of contributing terms as E(L(S 0)). The only instance where the possibility

of returning time to the waiting interval exists is when >2 messages are

contained in the initial interval. Thus only EL 2 2 ] will have a non-

zero return term.

E(L00 ) and E(L1 1 ) are straight-forward to calculate. These

correspond to the case where all the messages in an interval of

normalized length T are successfully transmitted in one slot. There-

fore

ELI l- T (4.3a)

E[L I] - - T (4.3b)
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In considering the other three terms we define the following

functions:

t20 (x) : The expected number of slots, assuming an initially

empty stack, before a renewal state is reached from

the state S20 (x).

t21 (x) : The expected number of slots, assuming an initially

empty stack, before a renewal state is reached from

the state S21 (x).

t22 (x) : The expected number of slots, assuming an initially

empty stack, before a renewal state is reached from

the state S22 (x).

R(x) : The expected interval length returned to waiting from

an interval of length x known to contain > 2 messages.

In t20 (x), t21 (x) and t22(x) the interval length x has again

been normalized. It represents a number of slots multiplied by the arrival

rate. These intermediate functions are therefore independent of A. The

empty stack assumption in these definitions implies that exactly one

conflict has been detected since the previous renewal state.

From these definitions it follows:

E(L02) - (1 + t20 (T)) -T (4.4a)

E(L12) - (1 + t2 1 (T)) - T (4.4b)

E(L2 2) = (1 + t22 (T)) - R(T) (4.4c)

In each equation here the 1 corresponds to the initial slot that

sends the system into one of the three S2-type states.

Once t 2 0 , t21, t2 2, and R have been determined the capacity
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calculation is essentially done.

In computing t20 (x), t2 1 (x) and t2 2(x) there are three important

factors. First of all, these functions will be defined recursively in

terms of the expected times to process intervals of length I (created

by the splitting of a conflict interval). In each case we look at the

policy, the different possible message distributions, and the different

possible sent-detected pairs (based on P0 2 and P1 2 ). Each of the functions

is in the form of a constant term plus probabilistic weighting factors

multiplied by t2 0 (-), t2 1 (), and t2 2 (-). Secondly, processing policy

changes for x < xc, and we would expect the recursion formulae to also

change at that point. This is where NCTOFF enters the capacity calculation.

Thirdly, a more subtle point, although we have defined these functions

assuming an empty stack, all stack manipulations are implicitly accounted

for in this recursive construction. This will be explained in more detail

later.

t 2 0 (x)

We first consider t2 0(x) for the case where x < xc . Both the

message distribution (there are no messages) and the policy followed

are independent of x. t20 (x) for x < xc is therefore dependent on only

P0 2 and P1 2. Call it t20 * We now consider exactly what happens in the

Noisy Channel Algorithm when we have an interval, of length x < x where

we think there are > 2 messages, but there are none. The entire interval

is first transmitted and this will bring the system to S unless a P02

error is made. If a P02 error is made the first half of the interval

is sent next. This will completely process (2) unless another P0 2
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error forces the system into the S2(A) state. In any case, the

system will eventually determine that there are no messages in (-)1Z

and the system will enter20 It follows from this discussion:

t20  1 + P0 2 [1 + P02 t20 + t20] (4.5a)

t * 1I+ P 02  (4.5b)
20 1 -P P 2

02 02
Thus the algorithm remains stable only for P < +

the point at which t20  
goes to infinity.

For t 20(x) where x > xc the policy followed is no longer independent

of x. The closer x is to x , the closer we are to a policy change.

This is important because the only way we discover the system is in a

S20(x) state is to transmit the entire interval.

In processing a S20 (x) interval the first half of the interval is

transmitted. If this results in a P02 error then we have two S20(i)

intervals to process. (The second one is removed from the stack and

processed when the first one is recognized as being an error. This

illustrates the manner in which the handling of the stack is implicitly

accounted for in this development). If no error occurs, there is only

20() 2 to process. Therefore,

t 20 (x) - 1 + (1 - P02) t 20 (1) + 2P0 t 2 0 ( ), x > x (4.6a)

t20(x) I + (1 + P02) t20 (i) , x > xc (4.6b)

We now have a procedure for calculating t20 (T). We start with

t20 (x t and use the recursion formula of equation 4.6b NCTOFF

times to reach t2 0 (T).
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21t 2 1 (x)

As with t20 (x), t2 1 (x) is independent of x for x < x, If

there is one message in an interval of length x, it is in either half

of the interval with probability 1/2.

In the derivation of t21  and t21 (x) x > Xc, we use the fact

that the expected time to reach S0 (x) from an empty stack S10 (x)

state is 1 + P0 2 t20 (x).

In S21 (x) where x < x we first send the entire interval which

will bring the system to S0 unless a P1 2 error is made. If an error is

made, the first half of the interval, ( ), is transmitted next. We then2

consider two equiprobable cases: contains the message or it doesn't.

If the message is in ( ) then we will reach a S 2) 1 state with proba-

bility P1 2, and we will eventually reach a SI(2) 2 state after (x)l has

been processed. If the message is in ( ) we will reach S2( ) with

probability P02, and once (2) is processed we will reach S1)

Thus,

* 1+P 1 * +21 1 2 [1 (P1 2 t21 + 1 + P0 2 t20) (4.7a)

1 * *2 02 t20 +21
3 *

I+ P 2 
+ l 2  02 + 2 0 (4.7b)

21 PI12 + P 2

2

Thus the algorithm is stable for all P1 2 < 1.

t (x) for x > x is no longer independent of x. We note that21 c

t21 (x) for x > x can be related to t21. The policies are identical except

that there is no initial transmission of the entire interval. t21 (x) now
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x x *

begins by transmitting 2 Also t2( ) must be substituted for t

begins bytasi1n 21 2 21'and t20(2) must be substituted for t2* in the expression. This same
20 22 (20awl

type of transformation also relates t20  and for x > x as well

as t22(x) x < x and t 2 2 (x) x > xc.

t21(x) 111 + P0 2 t 2 0 (-) + t21t21(x)  =( [i++PP 2

S[1 + P 2  + 1 t 2 0 ()] x > x (4.8a)+2 1+P2 t21(2) +  02 '0( c

I+ I1 + P2
3 + P1 t ) x > x (4.8b)

t 2 1 (x) = 2 + P0 2 t20 2  + 2 t 2 1j)

Thus we have a straightforward method to recursively compute

t21 (T).

t22(x)

We now consider t2 2 (x), where x < xc, and realize that this

function is not independent of x. The distribution of > 2 messages

in an interval is dependent on its length. For instance, as x approaches

zero we would expect that there are exactly two messages in the 
interval.

For large x there would be a much greater probability of having more

than two messages in the interval. t22 (x), for x < xc, is a function of
* * 

*

t 2 0 , t2 1 , and t 2 2 (j). Through reasoning similar to that used with t20

and t2 1  it follows that:

t1 - + Pr(0 in ( )il> 2 in x) [I + P0 2 t0 t 2 2

+ Pr(l in 2 in x)

[2 + Pr(>2 in ()2I >in 22  + (1 + P in

in (2E P 2 t *] + Pr(>2 in (x) 1 >2 in x)[1 +t

X < x (4.9)
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S II

We see that after the initial transmission (which results in a

conflict) there are three terms that arise from the possible number of

messages in the first half of the interval. If (2) contains no messages
x

then S22 (-)2 will eventually be reached. If (E) contains > 2 messages

then ( is returned to waiting and only S22( )1 needs to be processed.

If there is exactly one message in (T, then two cases are considered:

(x) containing exactly one message and ( 2containing more than one

message.

t W for x > x follows directly from the previous derivation.

22 C

There is no initial transmission of the entire interval, and t 2 0 ( ) and

x * *
S21 (i) are substituted for t20 and t21 respectively.

Ix
t22 (x) = Pr(O in ( E)1112 in x)[ P0 2 t20(2) +

x

+ Pr(l in ((i)l >2 in x) [2 + Pr(>2 in ( 1)21 >1 in

t I)+ (1 + Pr (1 in (21>1 in (X

x

P12 t21

+ Pr (> 2 in ( )11 >2 in x) [1 + t22(-)] > xc  (4.10)

With t20 (x) and t21 (x) we had an initial value from which to

begin recursion (t0 or t This is no longer true in calculating
20

t22 (x). The approach used here is to make a linear approximation to

t2 2(x) for xc > x 0 0. This then serves as an initial value. One

recursion formula is used to calculate t2 2 (xc). The second recursive

procedure is then used to get to t22(T). The linearization procedure

and the computational accuracy of this method are discussed in Appendix B.
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The results are summarized below:

t22(x) a + bx x >x 0 (4.11a)

a - 5 + P02 t20 + 2P t (4.11b)
2 12 21

b - y [19 + P02 t20 + 3P12 t2l] (4.11c)

We now turn to computing R(T) - the expected interval length

returned to waiting. This is a function of the message distribution

in T, and is independent of the error probabilities. R(x) will be

recursively defined in terms of R(2). If there are less than two

messages in (2) and two or more messages in 2 then we consider

R (TV If there are two or more messages in () then (2)2 is returned

to waiting and we determine R( )I. We see that:

R(x) - Pr(O in (2) > 2 in x) R(2)

+ Pr(l in 2i ( > 2 in x) (>2 in 1 >1 in R( )

+ Pr(> 2 in (2),>2 in x) + R(2)) (4.12)

We note that R(x) is independent of x . The same recursion formulac

is used for any value of x. We again have the problem of obtaining an

initial value and a linearization procedure is used for x 0 0. The

details of this approximation are given in Appendix B.

R(x) = a + bx , x 0 (4.13a)

a - 0 (4.13b)

b - 1/6 (4.13c)
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We now have defined explicit means for calculating t20(T),

t21 (T), t2 2 (T) and R(T). It follows that E[L 0 2 ], E[L 1 2], and EL 22]

can be found from equation 4.4. Substituting into equation 4.2

yields a linear equation in 1/X for E[L(S0 )]. Setting E[L(So)] = 0

and solving for X yields the largest stable throughput that can be

achieved for the values of T and NCTOFF that have been used. Appendix C

contains the FORTRAN programs that were used in making this calculation,

including the recursive iterations involved in determining the inter-

mediate values that have been discussed.

V. ANALYSIS OF NOISY CHANNEL ALGORITHM PERFORMANCE

5.1 Capacity Degradation Due to System Errors

In this chapter the performance of the Noisy Channel Algorithm

with respect to P02 and PI2 is discussed. In addition, a few observations

are made as to how the optimal algorithm parameters (T and NCTOFF )

behave with varying system error probabilities.

Figure 4 is a graph of the algorithm capacity at different error

levels. P0 2 and P1 2 are equal and denoted by P. Note that the parameters

are not the same at each point on the graph, but rather each point

represents the achievable throughput when the optimal stragegy is imple-

mented for that error probability.

It follows from Figure 4 that the capacity can be very well

approximated by a line over the region.1- P .5. This line has a slope

of about .58. At both ends of the error range the capacity falls off

at a faster rate.When errors are first introduced into the system (as

we move away from P = 0) channel performance is downgraded more rapidly

-40-



4.J,

00
1-4-

41.

600



than when the error probability is increased the same amount for an

already noisy channel (say P -.3).

The system performance also deteriorates quickly as P0 2 approaches .62.

This is the value at which t2 0 goes to infinity and the system there-

fore becomes unstable for any policy and any non-zero throughput. This

can be interpreted as the point where there are too many error induced

"messages". The system cannot recover from the time spent correcting

these errors.

Thus the X vs. P curve exhibits a reasonable and understandable

behavior in all regions.

It should be noted that if the P02 = P12 constraint is removed

P12 can take on any value less than 1 (see 4.7b) and the system will

still be able to achieve a non-zero stable throughput. This is related

to the fact that a S2 1 (x) interval is, in general, more efficiently

processed than a S20 (x) interval. Once a message is successfully

transmitted in the first half of a S21 interval the system moves to

the S10 state class. This then transmits the entire remaining interval.

The algorithm policy at an S20 state, however, leads to repeated divisions

of a conflict interval that contains no messages. Even below the cutoff

length, this inefficiency underlies S20 vs. $21 processing.

P12 going to 1 can simply be interpreted as the system never being

able to successfully transmit a message. Either P1 2 going to 1 or

P02 going .62 drives the system capacity to zero.

Table 1 indicates how the policy that achieves capacity varies

with error probability. Again P = P02 ' P 12 T has been optimized to

the nearest .05. A few important characteristics of the optimal
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Capacity vs. System Error Probability

P 09P1_NCT0FF TX

0.00 001.25 .487

0.05 5 1.45 .424

0.10 3 1.45 .383

0.15 2 1.40 .350

0.20 2 1.55 .323

0.25 1 1.35 .297

0.30 1 1.45 .273

0.35 1 1.60 .247

0.40 0 1.30 .219

0.45 0 1.40 .188

0.50 0 1.60 .151

0.55 0 1.95 .103

0.60 0 2.90 .035

TABLE 1
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policy can be extracted from this table.

First of all, NCTOFF is a monotonically decreasing function

of P. As the probability of error increases, the algorithm takes

fewer conflict interval divisions before deciding to transmit an entire

conflict interval. Secondly, for each interval of P having constant

NCTOFF , T is monotonically increasing in P. Thus for a given optimum

NCTOFF we take a larger initial S transmission interval (in normalized

time) as the chance of error increases. The optimality here is again

related to the fact that S21 slots lead to more efficient error correction

than do $20 slots. This becomes more important as P increases, and we

therefore transmit a renewal state interval with a greater expected

number of messages. Offsetting this is the possibility of, if T is

too large, transmitting an S interval that has too high a probability

of containing > 2 messages.
m*

In Table 1 we see that when NCTOFF is decremented there is a

corresponding discontinuous decrease in T . T then increases with P

again until the next drop down in NCTOFF
*

Figure 5 shows the error probabilities at which jumps in NCTOFF

occur. As P approaches 0 the jumps occur with increasing frequency.

At P = 0, NCTOFF must go to infinity. This is the error - free case

and we would never want to transmit a conflict interval in its entirety.

The point P = .40 is also significant in Figure 5. This is the error

probability at which NCTOFF goes to zero. At P - .40 the probability

of error is great enough that the optimum policy dictates a second

transmission of the entire S interval if a conflict is detected during

the initial transmission. All intervals are at or below the cutoff
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point and are handled using the special processing states.

Figure 6 is a graph of the maximum stable throughput, for

P02 - P12 = .5, over a range of NCTOFF and T values. The optimal policy

for these error probabilities is T 1.6 and NCTOFF = 0. We see that

for NCTOFF - 0, X is quite flat over 1.2 < T < 2.6, and the choice of

the value of T is not critical to achieving high throughput. We also

note that the maximum on the NCTOFF = 1 curve is very close to capacity.

Taking a larger S0 transmission interval and allowing for one conflict

interval division is roughly equivalent in performance to taking a

shorter interval and immediately following cutoff policy. We note that

as NCTOFF decreases, the maximum throughput point on each NCTOFF curve

is at a smaller T value. NCTOFF > 2 seems to significantly downgrade

the performance of this high error system. We see, however, that the

Noisy Channel Algorithm gives some flexibility in choosing parameters

to attain near-capacity throughput.

5.2 Algorithm Performance for Small Error Probabilities

In this section we first consider the degenerate case P02 = P12 ' 0.

This corresponds to an error-free system in which the optimal

algorithm never uses the special processing states.

As was explained previously, NCTOFF goes to infinity in this case.

The Noisy Channel Algorithm therefore reduces to the Gallager algorithm

in this instance. T = 1.266 and X f .48711 - concurring with

Gallager's results.

In practice, capacity can be very nearly achieved with NCTOFF > 10.

Figure 7 shows the maximum stable throughput for different algorithm
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parameters. X is approximately constant for NCTOFF - 10 and

.9 < T < 1.9. We also observe that the NCTOFF - 5 and NCTOFF 10

curves closely follow each other. So again, there is a range of

effective algorithm parameters. We see that as NCTOFF approaches

zero the inefficiency of transmitting conflict intervals (which will

always contain > 2 messages) begins to take its toll, and this leads

to severely downgraded performance.

Although t (T) and t (T) are not really meaningful in the case
20 21

where P02 1 P2 1 , it can be shown that they reduce to simple closed-

form expressions. From the derivations in Chapter 4, for P = P = 0,

t 20 1

t W - 1 + t 2 0 ( )

and therefore, t 20(T) = 1 + NCTOFF.

Similarly,

t21 21

t 2 1 (x) = + 1

and therefore,
NCTOFF-I

t 21 (T) = 1 +E 2-J
j -0

lim t21 (T) = 3.

NCTOFFI

It can also be shown from limiting state Poisson distributions

(as x 0) and the special processing state policies, that t2 2 (0) - 5

for P = 0. This is as predicted by the linear approximation to t2 2 (x)

given in appendix B.
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Table 2 indicates the behavior of the optimum policy and capacity

as P moves away from 0. NCTOFF = 10 was the greatest value considered,
,

and T was optimized to the nearest .005. NCTOFF decreases very quickly

as P is increased (from - to 3 as P moves from 0 to .1). )* is

approximately linear over 0 < P <.1. A good rule of thumb in this

region is: = .487 - P.

5.3 Some Interesting Algorithm Characteristics

A few other interesting points can be made from studying data

related to the functioning of the Noisy Channel Algorithm. The important

argument that the S2 1(x) state leads to more efficient error detection

than the S20 (x) state is supported by the fact that t20(x) > t2 1(x)

unless PI2 >> P02"

t 22(x) exhibits some interesting behavior. Figure 8 is a graph

of T22(x), at optimal policy, for the case P = P = .1. Note that

the abscissa is logarithmic to the base I , and therefore increasing x

corresponds leftward motion on the axis. t22 (x) is strictly defined

only at discrete values of x. The function reaches a local maximum

a x =Xc, and this appears to be a general property of t22(x) at the

optimum policy for a given P.

As x increases from T(1)3 toward T. t 22 (x) decreases at first.

The time to process a S x) interval does not always increase with
22

the length of the interval. This can be explained by the fact that the

Noisy Channel Algorithm policy for S22 intervals smaller than the

cutoff length is highly inefficient. Conflict intervals containing > 2

messages are being transmitted in their entirety. As we move away from
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Capacity for P 0

P P P NCTFF*
02' 12 iir

0 10 1.265 .487

10 -6  10 1.265 .487

10 - 10 1.270 .485

1-29 1.305 .471

2xl10 2  6 1.330 .458

5x10 2  5 1.430 .424

7.5x10-2  4 1.460 .402

10-1 3 1.425 .383

TABLE 2
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the cutoff point there is a chance that the transmission at a S22(x)

state will result in a message being successfully transmitted and a

SI( ) interval with exactly one message remaining. This is then

processed quickly and efficiently. Eventually, as we move further away

from xc, the probability of an interval containing more than two

messages grows, and this results in t2 2 (x) again increasing with x.

Thus far only the case where P = P has been analyzed.
02 12

Table 3 lists the optimal algorithm parameters and capacity for a

number of asymmetric cases, where P02 and P12 are unequal. The two

corresponding symmetric cases are also given for each related pair of

asymmetric probabilities. An upper limit of ten was imposed on

NCTOFF , and T was optimized with a grid size of 0.05.

For notational convenience we explicitly indicate X , T , and

NCTOFF as functions of P and P
02 12

X(P02' P 1 2 )

T (Po02',P12)

NCTOFF (P0 2,P1 2)

A few behavioral tendencies of the assymmetric error probability

cases can be extrapolated from the numbers in table 3. First of all

we note,

A(P 02,P) X (PP02)

That is, P0 2 and P1 2 seem to have roughly the same influence in down-

grading channel capacity (capacity seems to fall off slightly faster

with P1 2).
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Algorithm Optimization for Asymmetric Error Probabilities

P P NCTOFF T

02 12

.001 .001 10 1.25 .485

.1 .1 3 1.45 .383

.001 .1 6 1.25 .420

.1 .001 4 1.50 .429

0.0 0.0 10 1.25 .487

0.1 0.1 3 1.45 .383

0.0 0.1 6 1.25 .421

0.1 0.0 4 1.50 .430

0.0 0.0 10 1.25 .487

0.2 0.2 2 1.55 .323

0.0 0.2 4 1.30 .370

0.2 0.0 3 1.65 .391

0.1 0.1 3 1.45 .383

0.2 0.2 2 1.55 .323

0.1 0.2 2 1.30 .344

0.2 0.1 2 1.45 .353

0.2 0.2 2 1.55 .323

0.4 0.4 0 1.30 .219

0.2 0.4 1 1.30 .260

0.4 0.2 1 1.70 .271

0.0 0.0 10 1.25 .487

0.5 0.5 0 1.60 .151

0.0 0.5 2 1.25 .247

0.5 0.0 2 2.65 .259

TABLE 3
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In the regions considered here, the average of the two related

symmetric capacities seems to be a fairly good approximation to an

asymmetric capacity, or

P02,'I2 [12 (P0 2,P0 2) + X (P12,p12)]

The asymmetric capacity is in general a little smaller than this

average. The approximation is better for P 02> P12 than for P02 < PI2"

In the table 3 examples it is also evident that,

for P max W max [P0 2,P 12]

P min = min [P0 2,P 1 2 ]

NCTOFF (P max,P max) < NCTOFF (P 2,P1 2) < NCTOFF (P mi,Pn ). No equivalent

statement can be made for T

In cases where P02 > P12' the optimal policy calls for a larger T

and a smaller (or equal) size NCTOFF than would be optimum for the

system created by interchanging P02 and P 12 In other

words,

if P02 > P12
* ,

NCTOFF (P0 2,PI2) < NCTOFF (PI2,P0 2)

T (P0 2,P1 2) > T (P12,P0 2).

This is understandable. As P02 becomes relatively large in comparison

to P it becomes desirable to increase the expected number of messages

in a S transmission interval. A P02 error can only occur if the

transmission interval contains no messages and increasing T decreases

the probability of this happening.
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5.4 Suggestions for Further Research

There are several areas of further study suggested by this

thesis that could prove interesting. The behavior of the intermediate

functions derived in the Noisy Channel Algorithm could be analyzed more

rigorously. The system behavior for asymmetric error probabilities could

also be characterized in depth. There are also more general issues

concerned with introducing errors into a contention resolution scheme.

How does the introduction of a wider class of errors effect the

functioning of the Noisy Channel Algorithm? How can a transmission

interval algorithm be refined to more effectively process different

errors?
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APPENDIX A

State Transition for the Noisy Channel Algorithm

In this appendix the state transitions that define the Noisy

Channel Algorithm are presented. "q" is used to represent the interval

that is on the top of the stack. When the next state is indicated as

S(q), this implies an interval was taken off the stack.

Although the S2 policy states (S2, $21' S20 ) and S, policy

states (SI, S1 0 ) do not map directly to the Gallager Algorithm S2 and SI

policies the lag and interval length are updated in the same manner, as

implied by the state transition. A S10 transmission resulting in an

idle channel being detected is updated as follows:

d =d +-2
new dold + I z old

new 0

A "transition" from a S2 policy state to Sl(x) results in:

d =d

new dold

Xnew 2 old

The lag and interval length following a S state are updated

as they would be for a S2 state. An S (x) transition to S 2(x) implies,

dnew dold + 1

k old

new 2
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Note that when an interval is taken off the stack,

d l +d -t

new dold old

new

The state classes can be summarized as follows:

Regular States Policy

So SO

S1 S1

S 2  S 2

Error States Policv

SO S1S10 S1
$ 21 S 2

$20 S2

Special Processing States Policy

S* 
S*

2  2

-58-
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Regular States

Sent Detected Next State

S 0 0 S0

o 1 S20 (T)
1 1 S0

S0

1 > 2 S 2 1 (T)

> 2 -> 2 S 2 (T)

S1 (x) 0 0 won't occur

0 2 "

1 1 SO

1 > 2 S 2 1 (x)

> 2 > 2 S 2 (x)

S W x > x 0 0 $2(2

> 2 S20(T, add (-P2 to stack

1 1 x

1 1 $2( add ) to stack
x

>2 >2 $22(1 add (2)2 to stack

S2(x) x< Xc S1X)

-59-
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Error States

Sent Detected Next State

f x) x > X 0 020 2 2

0 >2 S - add (2)to stack

1 1 won't occur

1 > 2 if o

> 2 > 2 it o

S 20 (X) x < x c-s (X)

S 21 (x) x x i x~ S 1 W

S () x > Xc 0 021S X

0 > 2 S 2 add x to stack

1 1 2 -E

1 >2 S 2 add ()to stack

>2 >2 won'it occur

S 10(xW 0 0 S 10 (q) if 0 in q

S 1(q) if >1 in q

S0 if stack empty

0 > 2 S 20(xW

1 1 won't occur

1 >2 i

> 2 > 2
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Special Processing States

Sent Detected Next State

(xW: 0 0 S 20C(q) if 0 in q

S 21(q) if 1 in q

S 2 (q) if > 2 in q

S0 if stack empty

0>2 2(WxA

1 1 S 10 (q) if 0 in q

S 1(q) if >1 in q

S 0if stack empty

1 >2 S Mx

>2 >2 S2 (X)

S (X) 0 0 S2~~

0 >2 S~s add (X) t tc20 21 2 2tsac

1 1 S10(2 2 if 0 in ~~

S (2 ) if > 1 in (A)2

1 >2 S A add (A to stack

2 >2 S add x to stack
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APPENDIX B

Linear Approximation to t2 2 (x) and R(x)

For both t22 (x) and R(x) we need to make an approximation to the

function at x = 0. This then yields the initial points necessary to

recursively compute t2 2 (T) and R(T).

In linearizing both functions Taylor series approximations are used

on the Poisson probability distributions. For x 0, the following

approximations are generated:

-x/2(1 e -x/ 2  x e -x/2) x 2  5x3

1) Pr(O in Al > 2 in x) =2 8 48 1 x
2 -x -x 2  3 4

-e xe E 3
2 3

23

(2 e-x/2(1_ e-X /2) x 2- 3x 3

2l 4 16 =1 x2) Pr(l in - I > 2 in x) T4x - = 2 3 2
2- ex - xe x

2 3

2 xe-x/2 e-x/2 x 2-x3

3) 1 2- - 8 24 1 +
2 in ) -x -x 2 3 4 1

1-xe -e x x
2 3

2
x -x/2 x

e 2 4X4) PrUl in 2 > 1 in 2 -
4) 2  -x/2 -x 4

S-e - - x
2 8

-x/2 x -x/2 x
l-e -- e

5) Pr( > 2 in 1 in ) - 2 8 4
- 2 - 2 e-x/2

1 e
2 8
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t 22(x)

We set t (x) = a + bx where x < Y From the above equations
22 - c

and equation 4.9 we arrive at

t2 2(x) a + bx 1 + ( - [) [l + P0 2 t20 
+ a + +

( -- I2+ 12t 2 1 + (1 - ) P1 2 t 2  +
1 x 2 + P- t ++l X

2 12 21 12x2

( + +i [l a + -
412 2

throwing out higher order terms and solving,

a = 5 + P02 t20 +2P*2 12 t2 1

1 = * *
b -18 119 + 02 t20 + 312 t 2 1]

Again we set R(x) = a + bx, x 0. We observe that equation 4.12

can be rewritten as,

R(x) - R( ) [1 - Pr(1 in - - 2 in x) • Pr(l in xl > 1 in

+ 0 *. Pr( > 2 in > 2 in x)

substituting in for R(x) and the probability distributions,

R(x) a + bx (a + bx) [1 - -i) (1 - 4 ] + I ( )  I x

2 l 2 24] 4 (2 + T

-63-

A -- [



IF

this leads to,

a= 0

b =1/6

When we think of R(x)'s interpretation it makes sense that

lim R(x) = 0. Nothing can be returned to the waiting interval from
x-0
an interval of zero length.

In the computer programs that have been used to calculate the

-10capacity the linear approximations were made at a point x < T * 2

If linear approximations at x = 2- 9 are compared with a recursive

calculation of R(2- 9 ) or t2 2 (2-9), based on an approximation at x = 2
- 10,

the results are within .01% of each other. This accuracy is a result

of the probability distributions approaching their limiting values.
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APPENDIX C

Capacity Calculation Computer Programs

Two FORTRAN computer programs, that were used in calculating the

Noisy Channel Algorithm capacity at different error levels, are included

in this appendix.

The first program determines the optimum policy, for a given

P02 and P1 2 ' over a specified range of T and NCTOFF values. The

02 12'second program performs the same calculation, but it sets P 02 = PI12 and

determines the optimum policy for a number of error probability values.

Thus, the second program is helpful in analyzing how the algorithm

behaves in relation to the probability of error. The flexibility of

considering asymmetric cases, however, is lost.

In these programs, the linear approximations to R(x) and t 22(x)

takes place x < 210. If x > 2 then the t22 recursion formula

of equation 4.9 is used to find t,2 (Xc), and the formula of equation 4.10

is then used to determine t22 T). The same R(x) recursion formula of

equation 4.12 is used for any value of x. This procedure of starting

-10
recursion at x < 2 insures good approximations to the two functions

(as discussed in Appendix B). It also insures that the computational

accuracy of the program is relatively independent of the algorithm

parameters being Investigated.

Double precision variables are used in both programs. The programs

begin to become significantly inaccurate as T approaches zero or as

NCTOFF approaches 30. In these cases, the interval lengths being
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considered are extremely small and some of the distribution function

calculations suffer from important round-off effects. It has been

mentioned that, as far as algorithm efficiency is concerned, NCTOFF = 10

is a good approximation to any larger NCTOFF value.

The maximum stable throughput achievable for a given system appears

to be a convex function of NCTOFF. For a given NCTOFF, the maximum

throughput appears to be a convex function of T. These two properties

combine to make it relatively simple to find the optimal policy

corresponding to a set of error probabilities.

In running these programs the t20,t21,t2 2 or R functions can be

studied by strategically inserting a few WRITE statements.
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C THE NOISY CHANNEL ALGORITHM
C This program optimizes system throughput over
C a designated range of T and NCTOFF values.

IMPLICIT REAL*8 (A-H,O-Z)
EXP(X) DEXP(X)

10 WRITE(6,)'INPUT'
C Input error probabilities and boundaries for
C T and NCTOFF values considered. NCTOFF is
C considered at integer values, and T is
C optimized at values spaced by TGRID. I=1
C indicates that maximum throughput at all
C NCTOFF,T pairs is to be outputted.
C Otherwise, only optimum is printed out.

INPUT,P02,P12.TL,TH,TGRID,NCTOFL,NCTOFH,I
C If TL=O then exit program.

IF (TL .EQ. 0.) GOTO 410
C Compute t20* and t21'

T2OCUTx(1.0 + P02)/(1.0-PO2-PO2*PO2)
T21CUT-(I.0+1.5"PI2+PI2*PO2*T2OCUT)/(1.0-(Pl2"PI2+Pl2)/2.0)

C Compute t22 linearization coefficients.
A=5 .O+PO2*T2OCUT/2.0+2.O*P12"T21CUT

B=(19.O+PO2*T2OCUT+3.O*Pl2"T21CUT)/I8.0
C NUMBER = number of T iterations necessary.

NUMBER=(TH-TL)/TGRID + 1.6
C OCAP,OT, and NCTOF indicate optimum values.

OCAP=0.0
C Loop over T values.

DO 350 K=I,NUMBER
C Increment T by TGRID at beginning of new loop
C through.

T=TL+(K- )*TGRID
C Loop over NCTOFF values.

DO 350 NCTOFF=NCTOFL,NCTOFH
C L is the number of divisions beyond cutoff
C point necessary to insure linearization accuracy.

L=0
50 IF (T*(.5**(NCTOFF + L)) .LE. (.5*010)) GOTO 90

L:L+1
GOTO 50

C LIMIT is the total number of recursions from
C the linearization point to T.

90 LIMIT = NCTOFF + L
C Make the linear approximations to t22 and R.

T22CUT = A + B*T*(.5**LIMIT)
X = T*(.5*LIMIT)
RETURN = X/6.0
T22=T22CUT
T21=T21CUT
T20 =T2OCUT

C Begin recursion towards T.
DO 300 J=1,LIMIT

C Double interval length each time through.
C Y = new length; X old length.

Y=2.0*X
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C Compute conditional Poisson probability distributions.

DENOMI 1 .0-EXP(-Y)-YOEXP(-Y)
POISS1=(EXP(-X)*(1.0-(1.0+X)*EXP(-X)))/DENOM1
POISS2=(X'EXP(-X)'(1 .O-EXP(-X) ))/DENOM1
POISS3=(I-(X+I)OEXP(-X) )/DENOM1
DENOM2=X*EXP(-X)*(1.O-EXP(-X))
POISS5=((X'EXP(-X))*(1.0-(1.O+X)*EXP(-X)))/DENOM2
POISS4=(X OEXP(-X))/(1.0 - EXP(-X))

C R recursion formula.
RETURN = RETURN 0 (1.0 - POISS4'POISS2) + X*POISS3

C If we are below cutoff then we only do t22
C recursion before cycling back. Otherwise go to
C 150 and do all three recursions.

IF ((J - L) .GE. 1) GOTO 150
T22CUT 2.0 POISS1*(PO2*T20CUT+T22CUT) + POISS2*(P12*T21CUT)
&C1.0 + POISS) + 1.0 + POISS59T22)) + POISS30(1.0 + T22)
T22 = T22CUT
GOTO 290

150 T22=(POISS1'(1.0+PO2T20 T22))+(POISS2*(2.0 Pl2*T21*(1.0 +POISs4)
& POISS5*T22))+POISS3C(1.0 + T22I
T21=1.5 + P020T20+(1.0 P12)*T21/2.0
T20=1.0 + (1.0+P02)*T20

C Update X.
290 X=2.0'X
300 CONTINUE

C Compute Poisson probabilities for 0,1,>=2 messages in T.
PROBO-EXP (-T)
PROBI =T*PROBO
PROB2=1 .0-PROBI-PROBO

C Compute the maximum achievable stable output for this set of
C T and NCTOFF values.

TOP = T-PROB20RETURN
CAPCTY = TOP/(I.0 + (PROBO'P02'T20) + (PROB1*P12*T21) + (PROB2#T22))
IF (I .EQ. 1) WRITE(6,)T,NCTOFF,CAPCTY

C Have we found a new optimum policy?
C If not. cycle back immediately for new NCTOFF,T pair.
C If we do have a new maximum throughput, the optimum
C parameters and throughput are updated first.

IF (CAPCTY .LT. OCAP) GOTO 350
OCAP = CAPCTY
NCTOF = NCTOFF
OT- T

350 CONTINUE
C Output maximum throughput and optimal policy for the
C range of algorithm parameters that have been
C considered. Loop back for new input.

WRITE(6 , )OT,NCTOF, OCAP
400 GOTO 10
410 STOP

END
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C THE NOISY CHANNEL ALGORITHM
C This program is virtually identical to the previous
C program that finds the optimal policy, for a given P02
C and P12. over a range of NCTOFF and T values. In
C this program, however, we assume P02=P12, and the optimal
C policy is computed over a range of error probabilities.
C The same NCTOFF and T limits are used in examining the
C policy at different error probabilities. Thus this
C program just involves adding an outer DO loop to the
C the previous program. This loop just cycles through
C different error probabilities. We therefore can then
C observe how the optimal policy and capacity vary with
C channel characteristics.

IMPLICIT REAL*8 (A-H,O-Z)
EXP(X) = DEXP(X)

10 WRITE(6,)'INPUT'
C PL and PH are the lower and upper limits respectively
C on the error probabilities that are considered. PGRID
C is the spacing of the probabilities .

INPUT,PL,PH,PGRID,TL,TH,TGRID,NCTOFL,NCTOFH

IF (TL .EQ. 0.) GOTO 410
C NUMB is the number of iterations with different
C probabilities to be done.

NUMB=(PH-PL)/PGRID + 1.6
C Now establish the external Do loop that cycles the
C program with different error parameters.

DO 390 M=1,NUMB
C Update the error probabilities at the beginning of
C each loop through.

P02=PL+PGRID*(M-1)
P12=P02
T2OCUT:(1.0 + P02)/(1.0-PO2-PO2*P02)
T21CUT=(1.0+1.5*P12+P12*PO2*T20CUT)/(1.0-(P12*P12+P12)/2.0)

A=5 .0+PO2*T2OCUT/2.0+2.O'P126 T21CUT
B=(19.O+PO2"T20CUT+3.O*P12'T21CUT)/18.0
NUMBER=(TH-TL)/TGRID + 1.6
OCAP=0.0
DO 350 K=1,NUMBER
T=TL+(K-1 ) *TGRID
DO 350 NCTOFF:NCTOFL,NCTOFH
L=O

50 IF (T*(.5**(NCTOFF + L)) .LE. (.5"10)) GOTO 90
L=L+1
GOTO 50

90 LIMIT: NCTOFF + L
T22CUT = A + B*T*(.5"*LIMIT)
X = TO(.50*LIMIT)
RETURN = X/6.0
T22=T22CUT
T21 =T21CUT
T20=T20CUT
DO 300 J-1,LIMIT
Y=2.0'X
DENOMi I1 .O-EXP(-Y)-YIEXP(-Y)
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POISSI=(EXP(-X)0(1 .O-(1 .0.X)'EXP(-X)))/DENoM1

POISS2=(X'EXP(-X)*(1 .O-EXP(-X)))/DENOM1I POISS3=(1-(X+1 )OEXP(-X) )/DENOM1
DENON2=X*EXPC-X)0(1 .O-EXP(-X))
P01S5((XEXP(-X))(1.-(1.+X)EXP(-X)))/DEUiOM2
POISSI4=(X *EXP(-X))/(1.0 - EXEP(-X))
RETURN =RETURN * (1.0 - POISS14%POISS2) + XOPOISS3
IF W( L) .GE. 1) GOTO 150
T22CUT =2.O+POISS1'(P02'T2OCUT.T22CUT) + POISS2*(P12'T21CUT)

000+ POIsS14 + 1.0 +. POISS5*T22)) + POISS30(1.0 + T22)I T22 =T22CUT
GOTO 290I 150 T22=(POISS1'(1 .0+P02*T20+T22))+(POISS2'(2.0+Pl2'T210(1 .0 *POISS4)
&4P01SS5*T22)) +. POISS34(1.o + T22)
T21=1.5 + P02*T20+(1.o *Pl2)*T21/2.0
T20=1.0 + (1.0+P02)*T20

290 X=2.0'X
300 CONTINUE

PROBO=EXP(-T)

PROBi =T*PROBO
PR0B2=1.0-PROBi -PROBO
TOP =T-PROB29RETURN
CAPCTY =TOP/(1.0 + (PROBOOPo2OT2o) + (PROBlOP12*T21) + (PROB20T22))
IF (CAPCTY .LT. OCAP) GOTO 350
OCAP CAPCTY
NCTOF NCTOFF
OT = T

350 CONTINUE
C The maximum throughput and optimal policy are printed
C out at each error probability considered.

WHITE(6 ,)P02.OT,NCTOF,OCAP
390 CONTINUE
400 GOTO 10
410 STOP

END
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